You are here: Home > Research > Advanced experimental and theoretical spectroscopy

Advanced experimental and theoretical spectroscopy

Research in the Manganas group focuses on the development and application of advanced experimental and theoretical spectroscopic methodologies for the study of heterogeneous catalytic reactions.

Identifying catalytically active structures or intermediates in homogeneous and heterogeneous catalysis is a formidable challenge. It is well known that even for industrially leading catalytic processes there is a limited understanding regarding the catalytic activity of the working catalysts as well as the catalytic intermediates involved in the catalysis mechanisms. Such ‘missing’ information is however essential for the design of new functional materials. With all these in mind we have developed a joint project between several groups and departments in the institute aiming a spectroscopic and a reactivity understanding of the materials science processes.

Dimitrios Manganas

Dr. Dimitrios Manganas

Group Leader at the Max-Planck-Institut für Kohlenforschung
Group Leader at the MPI for Chemical Energy Conversion
Postdoc, MPI for Bioinorganic Chemistry; today: MPI CEC
Postdoc at the University of Bonn, Germany
Ph.d. (Chemistry) at the University of Athens, Greece
M.Sc. (Chemistry) at the University of Athens, Greece
Diploma (Chemistry) at the University of Athens, Greece
HPC-EUROPA scholarship for research stay (University of Barcelona)
Marie Curie researcher fellowship (University of Leiden)
  • Kubas, A., Berger, D., Oberhofer, H., Maganas, D., Reuter,K., Neese, F., Surface Adsorption Energetics Studied with “Gold Standard”Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110).J. Phys. Chem. Let., 7, 4207-4212,(2016).
  • Maganas, D., Trunschke, A., Schlogl, R., Neese, F., A unifiedview on heterogeneous and homogeneous catalysts through a combination ofspectroscopy and quantum chemistry. FaradayDiscussions, 188, 181-197, (2016).
  • Van Kuiken, B. E., Hahn, A. W., Maganas, D., DeBeer, S.,Measuring Spin-Allowed and Spin-Forbidden d–d Excitations in Vanadium Complexeswith 2p3d Resonant Inelastic X-ray Scattering. Inorg. Chem., 55, 11497-11501, (2016).
  • Atanasov, M., Aravena, D., Suturina, E., Bill, E., Maganas,D., Neese, F., First principles approach to the electronic structure, magneticanisotropy and spin relaxation in mononuclear 3d-transition metal singlemolecule magnets. Coord. Chem. Rev., 289,177-214, (2015).
  • Jiang, S. D., Maganas, D., Levesanos, N., Ferentinos, E.,Haas, S., Thirunavukkuarasu, K., Krzystek, J., Dressel, M., Bogani, L., Neese,F., Kyritsis, P., Direct Observation of Very Large Zero-Field Splitting in aTetrahedral (NiSe4) Coordination Complex. J. Am. Chem. Soc., 137, 12923-12928, (2015).
  • Suturina, E. A., Maganas, D., Bill, E., Atanasov, M., Neese,F., Magneto-Structural Correlations in a Series of Pseudotetrahedral [CoII(XR)4]2-Single Molecule Magnets: An ab Initio Ligand Field Study. Inorg. Chem, 54,9948-9961, (2015).
  • Maganas, D., Roemelt, M., Weyhermuller, T., Blume, R.,Havecker, M., Knop-Gericke, A., DeBeer, S., Schlögl, R., Neese, F., L-edgeX-ray absorption study of mononuclear vanadium complexes and spectralpredictions using a restricted open shell configuration interaction ansatz. Phys. Chem. Chem. Phys., 16, 264-76,(2014).
  • A combined DFT and restrictedopen-shell configuration interaction    method includingspin-orbit coupling: Application to transition metal L-edge X-ray absorptionspectroscopy. M. Roemelt, D. Maganas, S. DeBeer and F. Neese, J. Chem. Phys.,138, 204101 (2013).
  • Maganas, D., Roemelt, M., Havecker, M., Trunschke, A.,Knop-Gericke, A., Schlögl, R., Neese, F., First principles calculations of thestructure and V L-edge X-ray absorption spectra of V2O5using local pair natural orbital coupled cluster theory and spin-orbit coupledconfiguration interaction approaches. Phys.Chem. Chem. Phys., 15, 7260-76, (2013).
  • Theoretical Analysis of the SpinHamiltonian Parameters in CoIIS4     Complexes, Using Density Functional Theory and Correlated ab initio Methods.D. Maganas,  S., Sottini, P., Kyritsis and F. Neese., Inorg.Chem., 50   8741-8 (2011).  

Full publicationslist

Full publications list on Researcher ID

Research Topics

Theoretical X-ray spectroscopy

Theoretical X-ray spectroscopy

With the aim to uniquely correlate spectroscopic property to electronic structure and geometric property, we are working closely with the groups of Mossbauer & MCD  (Dr. Eckhard Bill) and X-Ray spectroscopy (Prof. Dr. Serena DeBeer) as well as with the heterogeneous reactions department (Prof. Dr. Robert Schlögl) and operate over the entire spectroscopic energy scale in order to evaluate unique spectroscopic signatures of transition metal complexes and materials in both equilibrium  and under operando conditions.

This requires to use methods that do not belong in the  stanard arsenal of quantum chemistry. As an example we have recently shown that the DFT Restricted Open-Shell Configuration Interaction with Singles (ROCIS) method[1] can succesfully treat the metal L-edge problem on classes of molecular systems from transition metal compounds up to polymetallic clusters with several 100s of atoms.1 In this respect we have explored this methodology to treat the metal L-edge problem on various close and open shell compounds and polymetallic clusters.[2-4]





Filter | Staff Search

All A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  • Dr. Benjamin Cahier

    Dr. Cahier, Benjamin




  • Dr. Agisilaos Chantzis

    Dr. Chantzis, Agisilaos

    PostDoc 01.01.2018 - 31.01.2018


  •  Tiago  da Costa Gouveia Leyser

    da Costa Gouveia Leyser, Tiago

    +49 (0)208 306 - 3588



  •  Anneke Dittmer

    Dittmer, Anneke

    +49 (0)208 306 - 2159



  • Dr. Dimitrios Manganas

    Dr. Manganas, Dimitrios

    +49 (0)208 306 - 3589


    to publications

  •  Rami Shafei

    Shafei, Rami

    +49 (0)208 306 - 3585