Modellierung von Katalysatoren und Reaktionsmechanismen in der Elektrochemie
Zwei der wichtigsten Reaktionen der elektrokatalytischen Energiekonversion sind die elektrochemische Wasserspaltung und die zugehörige Rückreaktion von Wasserstoff und Sauerstoff zu Wasser. Diese Reaktionen sind Teil der Prozesse in Wasserelektrolyseuren, die mittels Strom Wasserstoff erzeugen und Teil der Brennstoffzellenreaktion, die aus der Reaktion von Wasserstoff und Sauerstoff Strom generiert. Dabei ist vor allem die effiziente Reaktion des Sauerstoffs und Materialien, die oxidierenden Bedingungen langfristig standhalten, essentiell, um in großem Maßstab erneuerbare Energien zu speichern oder als Energiequelle für den Transport verfügbar zu machen.
Im Rahmen unserer Arbeiten beschäftigen wir uns methodisch mit der Entwicklung von Algorithmen und Ansätzen zur Beschreibung atomistischer Systeme in der Elektrochemie auf Basis von DFT Methoden für molekulare Systeme.
C. Poidevin, P. Paciok, M. Heggen, A. A. Auer, High resolution transmission electron microscopy and electronic structure theory investigation of platinum nanoparticles on carbon black, J. Chem. Phys. 150, 041705, DOI: 10.1063/1.5047666, (2019).
W. B. Schneider, A.A. Auer, Nanoparticles in Electrocatalysis and Theory, Bunsenmagazin, 17, 16-23, (2015).
W. B. Schneider, A. A. Auer, Constant chemical potential approach for quantum chemical calculations in electrocatalysis, Beilstein J. Nanotechnol., 5, 668-676. DOI: 10.3762/bjnano.5.79, (2014).
W. B. Schneider, A. A. Auer, Constant chemical potential approach for quantum chemical calculations in electrocatalysis, Beilstein Journal of Nanotechnology, 5, 668-676, (2014).
W. B. Schneider, U. Benedikt, A. A. Auer, Interaction of Platinum Nanoparticles with Graphitic Carbon Structures: A Computational Study, ChemPhysChem, 14, 2984, (2013).
I. Katsounaros, W. B. Schneider, J. C. Meier, U. Benedikt, P. U. Biedermann, A. Cuesta, A. A. Auer, K. J. J. Mayrhofer, The impact of spectator species on the interaction of H2O2 with platinum - implications for the oxygen reduction reaction pathways, Phys. Chem. Chem. Phys., 15, 8058, (2013).
U. Benedikt, W. B. Schneider, A. A. Auer, Modelling electrified interfaces in quantum chemistry: constant charge vs. constant potential, Phys. Chem. Chem. Phys., 15, 2712, (2013).
Im Bereich der Elektrokatalyse führen wir Elektronenstrukturrechnungen an Pt-Nanopartikeln zur Katalyse der ORR durch. Ein zentraler Punkt dabei ist die Wechselwirkung von Nanopartikeln und Katalysatorträger.Im Rahmen weiterer Kooperationsprojekte führen wir Simulationen an Iridiumoxid-Nanopartikeln als Katalysatoren der OER durch, wobei vor allem der Oberflächenzustand in Abhängigkeit von Potential und pH im Vordergrund stehen.
Die Projekte werden durch das BMWi, das BMBF und die MAXNET Energy Initiative der Max Planck Gesellschaft gefördert.
I. Spanos, A. A. Auer, S. Neugebauer, X. Deng, H. Tüysüz, R. Schlögl, Standardized Benchmarking of Water Splitting Catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Setup, ACS Catal., 7, 6, 3768-3778, (2017).
A. A. Auer, S. Cap, M. Antonietti, S. Cherevko, X. Deng, G. Papakonstantinou, K. Sundmacher, S. Brüller, I. Antonyshyn, N. Dimitratos, R. J. Davis, K.-H. Böhm, N. Fechler, S. Freakley, Y. Grin, B. T. Gunnoe, H. Haj-Hariri, G. Hutchings, H. Liang, K. J. J. Mayrhofer, K. Müllen, F. Neese, C. Ranjan, M. Sankar, R. Schlögl, F. Schüth, I. Spanos, M. Stratmann, H. Tüysüz, T. Vidakovic-Koch, Y. Yi, MAXNET Energy - Focusing Research in Chemical Energy Conversion on the Electrocatalytic Oxygen Evolution, Green, 5, 1-6, 7-21 DOI:10.1515/green-2015-0021, (2016)